Department of Biochemistry, College of Medicine, The Catholic University of Korea
The Institute for Aging and Metabolic Diseases
2024
Yang S†, Ko M†, Hur SC, Lee EK, Jeong SM*
SF3B4 regulates cellular senescence and suppresses therapy-induced senescence of cancer cells
Cancer Genomics & Proteomics. 21(6): 622-629 († equal-contribution)
Kim M, Hwang S, Jeong SM*
Targeting cellular adaptive response to glutaminolysis perturbation for cancer therapy
Molecules and Cells. 20;47(8):100096
Tak H, Cha S, Hong Y, Jung M, Ryu S, Han S, Jeong SM, Kim W, Lee EK
The miR-30-5p/TIA-1 axis directs cellular senescence by regulating mitochondrial dynamics
Cell Death & Disease. 15(6):404. doi: 10.1038/s41419-024-06797-1
Hwang S, Yang S, Park K, Kim B, Kim M, Shin S, Yoo A, Ahn J, Jang J, Yim YS, Seong RH, Jeong SM*
Induction of fatty acid oxidation underlies DNA damage-induced cell death and ameliorates obesity-driven chemoresistance
Advanced Science. DOI: 10.1002/advs.202304702
2023
Yang S, Moon S, Hur SC, Jeong SM*
Fatty acid oxidation regulates cellular senescence by modulating the autophagy-SIRT1 axis
BMB Reports. 56(12): 651-656
Kim M, Hwang S, Kim B, Yang S, Gwak J, Jeong SM*
YAP governs cellular adaptation to perturbation of glutamine metabolism by regulating ATF4-mediated stress response
Oncogene. DOI: 10.1038/s41388-023-02811-6
Yang S†, Hwang S†, Kim B, Shin S, Kim M, Jeong SM*
Fatty acid oxidation facilitates DNA double-strand break repair by promoting PARP1 acetylation
Cell Death & Disease. DOI: 10.1038/s41419-023-05968-w († equal-contribution)
Shin S†, Yang S†, Kim M, Lee EK, Hur SC, Jeong SM*
Fatty acid oxidation supports melanoma cell migration through autophagy regulation
Biochem Biophys Res Commun. DOI: 10.1016/j.bbrc.2023.06.090 († equal-contribution)
Kim B, Gwak J, Kim M, Yang S, Hwang S, Shin S, Kim JH, Son J, Jeong SM*
Suppression of fatty acid oxidation supports pancreatic cancer growth and survival under hypoxic conditions through autophagy induction
Cancer Gene Therapy. DOI: 10.1038/s41417-023-00598-y
2022
Jung M, Ryu S, Kim C, Cha S, Kang H, Ji E, Hong Y, Lee Y, Han S, Jeong SM, Kim W, Lee EK
RNA binding protein HuD mediates the crosstalk between β cells and islet endothelial cells by the regulation of Endostatin and Serpin E1 expression
Cell Death & Disease. 13:1019
Jeong SM, Bui QT, Kwak M, Lee JY, Lee PCW
Targeting Cdc20 for cancer therapy
Biochim Biophys Acta - Reviews on Cancer. DOI: 10.1016/j.bbcan.2022.188824
Lee HM, Kim AH, Hwang S, Jung J, Seol H, Sung JJ, Jeong SM, Choi JM, Jun JK, Kim HS, Jang J
Generation of αMHC-EGFP knock-in in human pluripotent stem cell line, SNUe003-A-3 using CRISPR/Cas9-based gene targeting
Stem Cell Research. 61:102779
Ryu S, Jung M, Kim C, Kang H, Han S, Cha S, Jeong SM, Lee EK
Loss of RNA binding protein HuD facilitates the production of the senescence-associated senescence phenotype
Cell Death & Disease. 13:329
2021
Hwang S†, Yang S†, Kim M†, Hong Y, Kim B, Lee EK, Jeong SM*
Mitochondrial glutamine metabolism regulates sensitivity of cancer cells after chemotherapy via amphiregulin.
Cell Death Discovery. 7:395. DOI: 10.1038/s41420-021-00792-7. († equal-contribution)
Kim SY, Shen Q, Son K, Kim HS, Yang HD, Na MJ, Shin E, Yu S, Kang K, You JS, Yu KR, Jeong SM, Lee EK, Ahn YM, Park WS, Nam SW
SMARCA4 oncogenic potential via IRAK1 enhancer to activate Gankyrin and AKR1B10 in liver cancer.
Oncogene. doi: 10.1038/s41388-021-01875-6
Jung J, Hwang S, Seol H, Kim AH, Lee HM, Sung JJ, Jeong SM, Choi YM, Jun JK, Kim DK, Jang J
Generation of Brachyury-mCherry knock-in reporter human pluripotent stem cell line (SNUe003-A-2) using CRISPR/CAS9 nuclease.
Stem Cell Research. 53:102321
2020
Kim B†, Gwak J†, Lee EK, Jeong SM*
Mitochondrial glutamine metabolism determines senescence induction after chemotherapy.
Anticancer Research. 40:6891-6897. († equal-contribution)
Ahn S, Tak H, Kang H, Ryu S, Jeong SM, Kim W, Lee EK
The RNA-binding protein, HuD regulates proglucagon biosynthesis in pancreatic α cells.
Biochem Biophys Res Commun. 530:266-272.
2019
Kim M, Gwak J, Hwang S, Yang S, Jeong SM*
Mitochondrial GPT2 plays a pivotal role in metabolic adaptation to the perturbation of mitochondrial glutamine metabolism.
Oncogene. doi.org/10.1038/s41388-019-0751-4
Oktavia L†, Jeong SM†, Kang M, Kim H, Lee TH, Zhang J, Seo H, Lee J, Han D, An Y, Yang C, Kim JH, Je JT, Son SM, Cho EA, Kim SY, Jin JO,
Lee PCW, Kwak M
Dye encapsulated polymeric nanoprobes for in vitro and in vivo fluorescence imaging in panchromatic range.
J Ind Eng Chem. doi.org/10.1016/j.jiec.2019.01.007. († equal-contribution)
2018
Lee JJ, van de Ven RAH, Zaganjor E, Ng MR, Barakat A, Demmers JJPG, Finley LWS, Gonzalez Herrera KN, Hung YP, Harris IS, Jeong SM, Danuser G, McAllister SS, Haigis MC
Inhibition of epithelial cell migration and Src/FAK signaling by SIRT3.
Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1800440115.
Yang S, Hwang S, Jang J, Kim M, Gwak J, Jeong SM*
PGC1α is required for the induction of contact inhibition by suppressing ROS.
Biochem Biophys Res Commun. 501:739-744.
Yang S, Hwang S, Kim M, Seo SB, Lee JH, Jeong SM*
Mitochondrial glutamine metabolism via GOT2 supports pancreatic cancer growth through senescence inhibition.
Cell Death & Disease. doi:10.1038/s41419-017-0089-1.
2017
Baek JY, Yun HH, Im CN, Ko JH, Jeong SM, Lee JH
BIS overexpression does not affect the sensitivity of HEK 293T cells against apoptosis.
Mol Cell Toxicol. 13:95-103.
2016
Yang W, Nagasawa K, Munch C, Xu Y, Satterstrom K, Jeong SM, Hayes SD, Jedrychowski MP, Vyas FS, Zaganjor E, Guarani V, Ringel AE, Gygi SP, Harper JW, Haigis MC
Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization.
Cell. 167:985-1000.
Jeong SM*, Hwang S, Park K, Yang S, Seong RH
Enhanced mitochondrial glutamine anaplerosis suppresses pancreatic cancer growth through autophagy inhibition.
Scientific Reports. doi: 10.1038/srep30767.
Jeong SM*, Hwang S, Seong RH
Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation.
Biochem Biophys Res Commun. 471:373-379.
Jeong SM*, Hwang S, Seong RH
SIRT4 regulates cancer cell survival and growth after stress.
Biochem Biophys Res Commun. 470:251-256.
2015
Jeong SM*, Haigis MC
Sirtuins in Cancer: a balancing act between genome stability and metabolism.
Molecules and Cells. 38:750-758. (* corresponding)
Jeong SM, Lee J, Finley LWS, Schmidt PJ, Fleming MD, Haigis MC
SIRT3 regulates cellular iron metabolism and cancer growth by repressing iron regulatory protein 1.
Oncogene. 34, 2115-2124.
2014
Jeong SM, Lee A, Lee J, Haigis MC
SIRT4 protein suppresses tumor formation in genetic models of Myc-induced B cell lymphoma.
J Biol Chem. 289:4135-4144.
2013
Laurent G, de Boer VC, Finley LW, Sweeney M, Lu H, Schug TT, Cen Y, Jeong SM, Li X, Sauve AA, Haigis MC
SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation.
Mol Cell Biol. 33:4552-4561.
Csibi A, Fendt SM, Li C, Poulogiannis G, Choo AY, Chapski DJ, Jeong SM, Dempsey JM, Parkhitko A, Morrison T, Henske EP, Haigis MC, Cantley LC, Stephanopoulos G, Yu J, Blenis J
The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4.
Cell. 153:840-854.
Jeong SM, Xiao C, Finley LW, Lahusen T, Souza AL, Pierce K, Li YH, Wang X, Laurent G, German NJ, Xu X, Li C, Wang RH, Lee J, Csibi A, Cerione R, Blenis J, Clish CB, Kimmelman A, Deng CX, Haigis MC
SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism.
Cancer Cell. 23:450-463.
2011
De Raedt T, Walton Z, Yecies JL, Li D, Chen Y, Malone CF, Maertens O, Jeong SM, Bronson RT, Lebleu V, Kalluri R, Normant E, Haigis MC, Manning BD, Wong KK, Macleod KF, Cichowski K
Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors.
Cancer Cell. 20:400-413.
2010
Jeong SM, Lee C, Lee SK, Kim J, Seong RH
The SWI/SNF chromatin-remodeling complex modulates peripheral T cell activation and proliferation by controlling AP-1 expression.
J Biol Chem. 285:2340-50.
2004
Jeong SM, Lee KY, Shin D, Chung H, Jeon SH, Seong RH
Nitric oxide inhibits glucocorticoid-induced apoptosis of thymocytes by repressing the SRG3 expression.
J Biol Chem. 279, 34373-34379.